Notes 4.2
Name: \qquad
Factor Analysis
Theorem. a divides b if for each prime p, the exponent of p in a is less than that in b.
Example 1.6 is a factor of 120 because $6 * 20=120$, or because $6=2 * 3$ and $120=2^{3} * 3 * 5$, and each exponent of a prime in 6 is less than or equal to the corresponding exponent of the prime in 120.

Let $n=p_{1} e_{1} p_{2} e_{2} . . p_{k}{ }^{e_{k}}$ be the prime factorization of n .
Number of Factors: $\left(e_{1}+1\right)\left(e_{2}+1\right)\left(e_{3}+1\right) \ldots\left(e_{k}+1\right)$.
Proof. Clearly a factor must be of the form $p_{1} x_{p_{2}} x_{2} . p_{k^{x_{k}}}$, where $0 \leq x_{i} \leq e_{i}$. Thus, each x_{i} can be one of $e_{i}+1$ values, implying the formula by constructive counting.

Product of Factors: We take factors in pairs (if x is a factor then so is n / x), and so the product of factors of n is $n^{(\# \text { factors of } n) / 2}$.

Sum of Factors: Observe this is given by $\left(1+p_{1}+p_{1}{ }^{2}+p_{1}{ }^{3}+\ldots+p_{1} e_{1}\right)\left(1+p_{2}+p_{2}{ }^{2}+p_{2}{ }^{3}+\ldots+p_{2}{ }^{e}\right) \ldots\left(1+p_{k}+p_{k}{ }^{2}+p_{k}{ }^{3}+\ldots+p_{k}^{e^{k}}\right)$, because on multiplying, each factor of n is represented exactly once.

Exercise 1. What is the number of square factors of $2^{200} 3^{199} 5^{198}$?

Example 2. What is the sum of the squares of factors of 144 ?
Solution. $144=2^{4} 3^{2}$. Consider $\left(1+2^{2}+2^{4}+2^{6}+2^{8}\right)\left(1+3^{2}+3^{4}\right)$. If we multiply this out, each square of a factor of 144 is represented exactly once in the sum. Thus, our answer is 341 * $91=$ 31031.

Exercise 2. What is the sum of the cubes of factors of 72?

Exercise 3. Use the geometric series formula to write the sum of factors formula in a different way.

Exercise 41. What is the prime factorization of the product of the factors of (a) 72 (b) 144 (c) 112 (d) 91 (e) 1000 (f) 160 ?

Exercise 42. Find the sum of the sum of the factors of 36

Exercise 43. Define a perfect number to be a number equal to the sum of its proper factors (factors not including itself). For example, 6 is perfect because $1+2+3=6$. Define an abundant number to be a number n whose sum of proper factors is greater than n; define a deficient number to be a number n whose sum of proper factors is less than n.
a. Show that 28 is a perfect number.
b. Determine whether $7,13,26,18,30,25$ are perfect, abundant, or deficient.
c. Prove that all prime numbers are deficient.
d. Show that all numbers of the form $2^{n}\left(2^{n+1}-1\right)$, where $2^{n+1}-1$ is prime, are perfect numbers.

