Number Theory \#2 Solutions

1. We know that for a square number to occur, the power of any prime factor must be even. Thus we only consider the even powers for $2^{200} 3^{199} 5^{198}$ so we can divide by 2 to get $2^{100} 3^{99} 5^{99}$. We then multiply $101 * 100 * 100=1010000$.
2. We know that $72=2^{3} 3^{2}$. We can write this as $\left(1+2^{3}+2^{6}+2^{9}\right)\left(1+3^{3}+3^{6}\right)=585 * 757$ $=442845$.
3. The geometric series formula is $S=\frac{a\left(r^{n}-1\right)}{r-1}$. We know the first term will always be 1 so we can eliminate the a. Thus, for a number $p_{1}{ }^{a} * p_{2}{ }^{b} * p_{3}{ }^{c} \ldots$ the sum of factors will be $\left(p_{1}{ }^{a+1}-1\right) /\left(p_{1}-1\right) *\left(p_{2}{ }^{b+1}-1\right)\left(p_{2}-1\right) *\left(p_{3}{ }^{c+1}-1\right)(p-1) \ldots$.
4.

(a) $2^{18} 3^{12}$
(b) $2^{30} 3^{15}$
(c) $2^{20} 7^{5}$
(d) $7^{2} 13^{2}$
(e) $2^{24} 5^{24}$
(f) $2^{30} 5^{6}$
42. We know that $36=2^{2} 3^{2}$ so the sum is $\left(1+2+2^{2}\right)\left(1+3+3^{2}\right)=7 * 13$. Since both are prime factors, we repeat the process of $(1+7)(1+13)=8 * 14=112$.
43. a) The sum of the proper factors of 28 is $(1+2+4)(1+7)-28=28$, thus 28 is a perfect number.
b) As prime numbers only have 2 factors, (1 and itself), the sum of proper factors must be equal to 1 . So prime numbers are deficient, thus 7 and 13 are deficient.
For 26 we do $(1+2)(1+13)-26=16$. Thus it is abundant.
For 18 , the sum of proper factors of 18 is equal to $(1+3+9)(1+2)-18=21$ so it is abundant.
For 30 the sum is $(1+5)(1+2)(1+3)-30=42$ so it is abundant.
For 25 we have $1+5=6$ so it is deficient.
c) As prime numbers only have 2 factors, (1 and itself), the sum of proper factors must be equal to 1 . So prime numbers are deficient.
d) We write the sum of the factors as $\left(1+2+\ldots+2^{n}\right)\left(1+2^{n+1}-1\right)-2^{n}\left(2^{n+1}-1\right)$ which is equal to $\left(2^{n+1}-1\right)\left(2^{n+1}\right)-\left(2^{n+1}-1\right)\left(2^{n}\right)=\left(2^{n+1}-1\right)\left(2^{n}\right)$, thus the number is perfect.

